European Biotechnology

Life Sciences and Industry Magazine

Autumn Edition 2022 | Volume 21 | 20 €

Interview

Abivax CEO Hartmut Ehrlich on what's needed to establish new approaches to autoimmune diseases.

Industrial Biotech

Bioengineered bacteria that could help stop climate change


Patent Waiver

How the WTO is corroding the roots of biopharma innovation

CROs & CDMOs

How gene and cell therapies are transforming the pharma market

Prep for the future

Novel semi-preparative Supercritical Fluid Chromatography system

Designed in collaboration with the Enabling Technologies Consortium, the award-winning Nexera UC Prep SFC is a next-generation solution to the demand for efficient and robust semi-prep SFC purification in the pharmaceutical, chemical and food industries. Its flexible system configuration in a compact design allows users to overhaul their workflow, reduce inefficiencies and meet a wide range of purification requirements.

High recovery rates

through the patented "LotusStream" gas-liquid separator technology

Maximizes lab resources

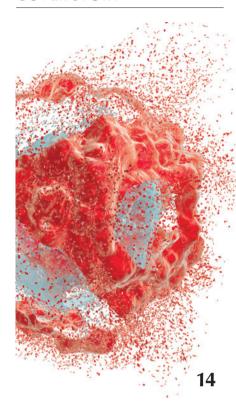
with its compact design, green technology and fast dry down times

Streamlined processes

while fitting into pre-existing workflows with the easy-to-use "Prep Solution" software

Biotechnology-driven carbon revolution

DR MICHAEL KÖPKE, is pioneer in Synthetic Biology of carbon-fixing microbes. Michael started his career at the University of Ulm and has over 15 years' or experience in biotech. Since 2009, he is working for LanzaTech, currently as VP of Synthetic Biology. Michael is also an adjunct faculty at Northwestern University and part of the Engineering Biology Research Consortium council. He is an inventor of over 200 patents, has published over 50 scientific articles and is an awardee of the Presidential Green Chemistry Challenge award.


Fossil carbon is in nearly everything we use in our daily lives ranging from power and fuels to fibers, coatings, and materials used in our clothes, packaging, toys, and household goods. Virgin fossil carbon use in these products is not sustainable given the current understanding of the impact of extracted, emitted, and waste carbon on our environment, climate, and vulnerable populations. To achieve our climate goals and mitigate climate disasters, a large-scale, robust, rapid, and sustained effort must be made to re-tool our entire carbon economy. To align with a "Net Zero Path," economies today are investing in innovative carbon transformation technologies that enable a circular carbon economy where carbon is reused rather than wasted.

Aimed to foster that clean energy future, biotechnology is poised to play a major part in a circular carbon economy providing a path to displace products made from petroleum with alternatives from recycled carbon. Biological systems are uniquely suited for this challenge. Life on Earth evolved on transforming CO, into more complex building blocks and biology unlike traditional technologies is inherently flexible and capable of processing chaotic input streams. This allows accessing low-cost, regional feedstocks including industrial offgases, agricultural residues, and municipal waste; CO, with the addition of green H, can make an unlimited supply of sustainable products. Imagine polyester for a dress made from recycled carbon from a steel mill. This is not science fiction, it's happening commercially today. Global consumer brands are already using recycled carbon chemicals in their supply chain enabled by biotechnology.

As we enter a critical period for energy use and for our climate, we should all take steps to consider how to enable a stronger circular carbon economy. As business leaders, we can use carbon transformation to rethink how we procure, use, and dispose of carbon. And as consumers, we can choose where our carbon comes from. In the quest for innovative technologies, we must ensure they benefit both rural communities and traditional manufacturing centers to support a more sustainable, equitable, and resilient economy.

Carbon transformation technologies offer solutions that can be applied across economic sectors, such as agriculture, industry, and waste management, as an essential strategy to reduce greenhouse gas emissions; meet commitments to reduce fossil imports and support the wider economy. Carbon transformation can address sustainability needs domestically by reducing air pollution, recycling waste, providing clean jobs, generating cleaner burning fuels, and producing low-carbon materials stamped. But we need more industries to adopt the approach. To heal and repair the world takes time. And with innovation and strong partnerships and the support of government leaders, we are ready to make the transition and celebrate a post-pollution future.

COVER STORY

The new drug class of degraders and glues

The 2004 Nobel Prize for Chemistry was granted for the discovery of the ubiquitin degradation pathway of proteins, while seminal work in the field happened decades earlier. But only recently have over 15 compounds in a new drug class based on ubiquitination truly entered clinical development. What are known as PROTACs and 'molecular glues' are now driving a dynamic field, and the pharmaceuticals industry is throwing a lot of funding at it. The ability to mark disease-causing protein targets for destruction could soon help treat even 'undruggable' conditions.

INSIGHT EUROPE

- 8 Industry concerned about World Trade Organisation plan to expand COVID-19 patent waiver to diagnostics and med-tech
- European Commission blocks Illumina's US\$8bn acquisition of liquid biopsy leader Grail; CRO survey finds trend towards study decentralisation; ECBF expands company portfolio

ECONOMY

- 14 New drug class of protein degraders advances to clinical stage
- 22 Analyst commentary; News from the floor
- 23 European Biotech Stocks
- 26 Interview: Prof. Dr Hartmut Ehrlich, CEO, Abivax SA, Paris
- **30** Update on clinical trials
- **32** Biopharma partnering is the next financing
- **34** Start-up profile: EpiQMAx GmbH, Martinsried, Germany
- **36** The pharma lab in the era of gene and cell therapies
- 58 Bioenergy and biofuels from carbon dioxide feedstocks

REGIONAL NEWS

- 66 Northern Europe: Sweden, Denmark and Iceland
- **68** Western Europe: France, Belgium, The Netherlands and the UK
- 70 Central Europe: Germany, Switzerland and Austria
- **72** Southern Europe: Italy, Spain and Greece
- 74 Eastern Europe:
 Poland and the Czech Rebublic

SCIENCE & TECHNOLOGY

- **75** Sourcing innovation in the life sciences sector
- 76 New cell model drives R&D; Nasal antibody cocktail eliminates SARS-CoV-2 variants
- 77 Speedy DNA extraction from buccal swabs & FFPE samples
- **80** Cool chain: reliable medical-grade refrigerators

PICK & MIX

- 83 News from Biotech Austria, the Swiss Biotech Association and the ECBF
- 88 New products
- 88 Company index
- 89 Events
- 90 Encore

IMPRINT European Biotechnology (ISSN 2364-2351) is published quarterly by: BIOCOM AG, Jacobsenweg 61, D-13509 Berlin, Germany, Tel.: +49-30-264921-0, Fax: +49-30-264921-11, Email: service@ european-biotechnology.com, Internet: www.european-biotechnology.com; Publisher: Andreas Mietzsch; Editorial Team: Thomas Gabrielczyk (Editor in Chief), Derrick Williams (Co-editor), Dr Georg Kääb, Maren Kühr, Gwendolyn Dorow; Advertising: Oliver Schnell, +49-30-264921-45, Christian Böhm, +49-30-264921-49, Andreas Macht, +49-30-264921-54; Distribution: Lukas Bannert, +49-30-264921-72; Graphic Design: Michaela Reblin; Production: Martina Willnow; Printed at: Königsdruck, Berlin; European Biotechnology Life Sciences & Industry Magazine is only regularly available through subscription with a BIOCOM CARD. Annual subscription BIOCOM CARD Europe: 680 for private individuals (students €40) incl. VAT, €120 plus VAT for corporates. Prices includes postage & packaging. Ordered subscriptions can be cancelled within two weeks directly at BIOCOM AG. The subscription is initially valid for one calendar year and is automatically renewed every year after. The subscription can be cancelled at any time and is valid until the end of that calendar month. Failures of delivery, which BIOCOM AG is not responsible for, do not entitle the subscriber to delivery or reimbursement of pre-paid fees. Seat of court is Berlin, Germany. As regards contents: indivally named articles are published within the sole responsibility of their respective authors. All material published is protected by copyright. No article or part thereof may be reproduced in any way or processed, copied, and proliferated by electronic means without the prior written consent of the publisher. Cover Photo: Kateryna_Kon - stock.adobe.com; ® BIOCOM is a registered trademark of BIOCOM AG, Berlin, Germany.

INDUSTRIAL BIOTECH

Solving the gas crisis

Fossil fuel use is driving climate change. Almost 80% of today's anthropogenic CO_2 emissions can be traced back to the burning of oil, coal or natural gas. To help preserve existing infrastructure, bioengineers are working to make combustion in cars, aircraft and power plants CO_2 -neutral. We took a look at the most advanced technologies in the field.

INFLAMMATION

Final track for Abiyax

Paris-based public company Abivax SA has bagged €50m to push development in its promising Phase III candidate obefazimod in autoimmune diseases, starting with ulcerative colitis. We spoke with CEO Hartmut Ehrlich about how despite the cash injection, the trials still face financing challenges.

SPECIAL

CROs & CDMOs

- 39 Technology expansion
- 40 Interview: Christian Schetter, CSO, Rentschler Biopharma SE
- 44 CRO of the future
- 46 Innovation in drug development
- 48 Bringing virotherapy forward
- 50 Interview:
 - Dimitrios Wagner, Charité
- 53 CB21 R&D: CDM0 for endocannabinoids
- 54 Vector BioPharma: the future of gene delivery

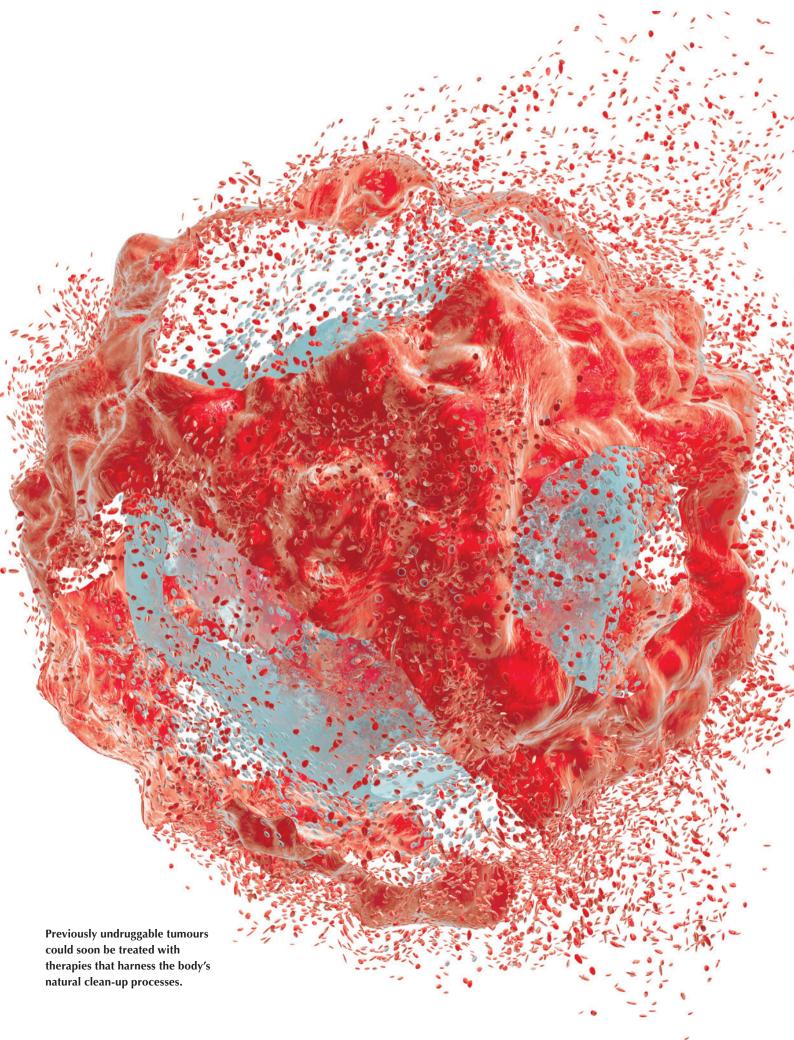
EDITORIAL

Industrial Biotech

The EU climate change service Copernicus recently determined that in 2022, the months of June, July and August were warmer in Europe than at any time since records began. In addition, August this year was generally much drier than average in Western Europe, and some areas in the eastern part of the continent as well. Few people continue to think we're just living through capricious weather. The climate catastrophe has begun, and industrialised countries are desperately searching for ways to lower dependence on fossil fuels.

Unfortunately, biotechnological solutions are hardly being discussed at all in the current climate and energy crisis, even though it should be clear that our global economy urgently needs to be adapted to the natural cycles of our planet. The best way to do that is to biologise industry. Why aren't decisionmakers talking about it?

A new event aims to remedy the situation: INDUSTRIA BIOTEC, which will take place on 7 October in Berlin. This European convention is dedicated to the most important areas of application and impact of biotechnological solutions in five forums: Nutrition (Food), Energy, Waste, Chemistry and Capital.


In addition, there will be a range of other information and communication offers, such as partnering, a start-up pitch, company presentations, an exhibition and – of course – plenty of opportunities for personal exchange. And all of this at a sensational venue

from the 1920s. We look forward to seeing you there!

> Andreas Mietzsch Publisher

Pictures: © AdobeStock/tilialucida; Abivax SA (right), Gingko Bioworks (upper left), BIOCOM AG (right)

FREE EXCERPT

Breaking down diseased proteins

UBIQUITINATION The Nobel Prize for Chemistry was granted for the discovery of the ubiquitin degradation pathway of proteins back in 2004, while the seminal work in the field happened decades earlier. But only recently have over 15 compounds in a new class based on the mode of action truly entered clinical development, mainly in cancer. What are known as PROTACs and molecular glues are now driving a dynamic research area, and the pharmaceuticals industry has begun to throw serious funding at it.

ans can storm a football pitch for a couple of different reasons. It might be after the final whistle, or a serious foul, or perhaps a bad call on the part of the referee. In the game of drug development, however, Big Pharma spectators don't leave their seats very often. So when you see them running out onto the field eager to join forces with promising companies, it's a pretty good bet blockbusters won't be far behind.

The pioneering work behind it

That's what's happening for instance in the field of 'targeted protein degradation' (TPD), which has been evolving and maturing since the early 1980s, when Aaron Ciechanover, Avram Hershko and Irwin Rose published studies on ubiquination that would eventually lead to their jointly-received Nobel Prize. An important milestone along the way was work published by Craig Crews and colleagues in 2001. It described the first heterobiofunctional degrader – a novel use of the ubiquitin system through external addition that for the first time seemed to put targeted degradation reactions within reach. But it took another decade until Crews was able to move into concrete application and development. He only founded the startup Arvinas in 2013, after it could be shown that a synthetic protein degrader also works *in vivo*.

At that time, the field was still pretty sparsely populated, and not many spectators were scattered throughout the bleachers. But progress at Arvinas and other firms on the pitch was gradually awakening interest. Interestingly, the startup's first major partnership with Bayer in 2019 was in the agricultural sector, where a joint venture called Oerth Bio was set up to test the functionality and usability of PROTACs in a kind of side-show. After Arvinas launched a clinical trial the same year and started presenting proofof-concept for their two degrader projects (ARV-471 and ARV-110) in 2020, the field turned into a pretty popular pie. Suddenly, it seemed, everyone wanted a slice.

In the years since, many more companies have brought related projects into the clinic, and a lot more lucrative deals between biotech start-ups and Big Pharma have been struck.

From bench to bedside

By the end of 2022, around 15 degraders will have entered clinical trials, and it's past time to explain how they work. Unlike conventional drugs, which often block the action of a protein by binding to a specific site, targeted degraders

use the cell's natural waste disposal system (in which ubiquitin plays a key role) to remove harmful proteins by marking them up for destruction. The principle could also be applied to treat disease, especially for illnesses previously considered untreatable.

A major advantage with degraders is that they can destroy target proteins that can't be addressed with conventional drugs. There are currently two different classes of protein degraders in use: PRO-TACs (PROteolysis TArgeting Chimeras), and 'molecular glues' (also called 'molecular glue degraders'). Both utilise small molecules that can pass through barriers in cells. PROTACs are made up of two protein-binding molecules joined together by a linker. One of them binds specifically to the protein targeted for degrading. The second molecule recruits the E3 ubiquitin ligase. It's a special enzyme that can transfer the regulatory protein ubiquitin to other proteins, which marks them up for destruction by the proteasome.

Conventional small-molecule drugs require a defined binding site on the surface of a target protein, but molecular adhesives don't. This opens up a completely new possibility – intervening with proteins that were previously consid-

>> Read the full story in the printed issue.

Future energy: Biology strikes back

SYNTHETIC BIOLOGY When it comes to climate change, combustion is the new scourge of humanity. Almost 80% of today's anthropogenic CO_2 emissions can be traced to the burning of fossil fuels. More than a third of all emitted carbon dioxide is due to power generation, while industrial combustion and transport are each responsible for another fifth. Bioengineers are racing to make combustion in automobiles, aircraft and power plants CO_2 -neutral while preserving existing infrastructure. It's a tricky path to tread.

n March of this year, Jason Kelly, the CEO and co-founder of the SynBio company Ginkgo BioWorks, posted an astonishing message. "The best time to address climate change was decades ago," he wrote, then asked when the next-best time would be. "Limiting warming to below 1.5°C will require us to reimagine our industrial landscapes to eliminate emissions and to sequester carbon from the atmosphere," he said. "Decarbonising our energy, materials, chemicals, and food production will require massive shifts in how we make stuff." The way forward, according to Kelly, must definitely be rooted in what he sees as the most advanced manufacturing technology on the planet: biology – particularly, synthetic biology. The code of life of microorganisms, enzymes and cell factories will have to be rewritten to produce energy, fuels, chemicals and food without CO, emissions. According to Bill Gates, synthetic biology will soon be one of the enabling climate technologies that will create companies that generate trillions of dollars.

In the midst of the currect energy crisis, some biotech companies are finally ready to make the old combustion technology – decried as a climate disaster but still a pillar of private and industrial transport – more acceptable. After all, their advanced biofuels already cut CO₂ emis-

sions by 60-90% by harnessing gas fermentation of cellulosic waste or combustion gases from steel mills, oil refineries or aluminum smelters. Even natural gas can now be produced in fermenters with help from pathway-engineered micro-

PROF. DR PETER LINDBLAD
Head Microbial Chemistry, Ångstrøm
Laboratory, Univ. of Uppsala, Sweden

? How can SynBio contribute to the mitigation of CO₂ emissions?

By combining advanced genetic engineering and synthetic biology, we can design microbial cells that are capable of performing entirely new functions. Our team is trying to demonstrate how you can take modified cyanobacteria that produce isoprene and, by using solar energy and photochemistry, get aviation fuel directly. organisms, without using any agricultural land at all. The tank-or-table debate actually ended long ago. Together with overdue, binding regulations on energy conservation, the widespread use of biotechnology promises a reprieve from annual CO₂ emissions that, according to the International Energy Agency (IEA), doubled globally between 1970 and 2010.

Carbon-negative manufacture

Using the chemolithotrophic bacterium *Clostridium autoethanogenum* as a chassis strain for Al-supported metabolic pathway engineering, Illinois-based Lanzatec Inc. has established a continous production process that can produce drop-in biofuels and over 100 commodity chemicals with a negative carbon footprint. The company licences its carbon capture and transformation (CCT) plants under the product brand CarbonSmart™ to industrial customers.

For commercial-scale, next-generation bioethanol production, the company runs two plants in China that convert steel mill combustion gases. Already in pilot-scale seven years ago, the continuously optimised process produced bio-ethanol that emitted 70% less CO_2 than gasoline – a result similar to second-generation cellu-

>> Read the full story in the printed issue.

Picture s: © Ginbgko Bioworks (left), Mikael Wallerstedt (right)

COMPANY INDEX

FREE EXCERPT

3D Medicines Co. Ltd. (CN) 30	Element Materials (DE)	Oerth Bio (USA)
	EpiQMAx GmbH (DE)	Omega Fund USA) 6
AB InBev Group (B) 69	Eppendorf AG (DE)	Opel Automobile GmbH (DE) 62
		Origo Riopharma CL (IT)
AbbVie Inc. (USA)	Eppendorf Austria GmbH	Origo Biopharma SL (IT)
Abivax SA (F)	EQT Partners AB (SE)	Ottobock Healthcare (DE) 6-
AC Immune SA (CH)71	EtheRNA immunotherapies NV (B) 68	Oxea GmbH (GER)
Advent Life Sciences LLP (UK) 85	Evotec (Modena) Srl. (IT)72	
Aegean Airlines (GR)	Evotec SE (DE) 16, 18, 68, 72	Pace Ventures Enigma (DE)
AGC Biologics (USA)	Excelya Group SAS (F) 43, 44	Patheon Pharmaceutical Serv. (USA)46, 5
Albumedix (DK) 68	ExxonMobil (USA) 60	Petroleum Group (GR)
	EXACTIVIDATI (C3/1)	
AllianceBernstein (USA)22	F2C 1 (1 /1 /1 /1 /)	Pfizer (USA) 16, 30, 31, 64, 66, 7
Alphamab Oncology (CN) 30	F2G Ltd. (UK)84	Phytonix (USA)
Alvotech SA (ISL)67	FGK Clinical Research GmbH (DE)39	PlasmidFactory GmbH & Co. KG (DE) 19
AmBev (B)	Födergesellschaft IZB (DE) 34, 35	Plexium (USA)
Amgen Inc. (USA)	Forbion Capital Partners (NL) 67	PMV (B)
Amphista Therapeutics Ltd. (UK)17, 18	Forma Therapeutics (USA) 66	Polpharma Biologics (PL) 30, 74
Amyris Inc. (USA)60	Formycon AG (DE)	PPF Group (CR)
Andera LifeSciences Partners (F) 90	Frontier Medicines Corp. (USA)	Prima Biotech GmbH (DE)
Andera LifeSciences rathlers (F) 90		Professional Theorem (Co. (UCA)
Apex Ventures (AT)	Fund+ (B)	Proteovant Therapeutics (USA)
arGEN-X BV (NL/B)		Proxygen (A)
Artcline GmbH (DE)31	Galenica AG (CH)84	PULŚĔ Chesaux-sur-Lausanne (CH) 28, 29
Arvinas Inc. (USA) 15–18	Genedata AG (CH)	
Asabys Partners (ES)	Genmab A/S (DK)	QLi5 therapeutics (DE) 20
AstraZeneca (GB/SE)	GenScript Biotech (Netherlands) B.V 47	X 0.00 products (= -)
Austrian Business Agency	Ginkgo Bioworks (USA)	R42 Group (USA)
	GlaxoSmithKline (UK)	Redmile Group (USA)
Avantium NV (NL)	Clobal Blood Theremostics (LCA)	
AXA Investment (USA) 67	Global Blood Therapeutics (USA) 66	Relief Therametrics SA (CH)
Axxam SpA (IT)	Global Energies (UK) 60	Rentschler Biopharma (DE)38, 40, 42, 4
Azenta Inc. (USA)69	Grail Inc. (USA)	Richter-Helm BioLogics GmbH (DE)4
	Grand Pharma Ltd. (UK)68	Rigenerand Srl. (IT)
B Medical Systems S.a r.l. (LU) 13, 69, 80	Grifols SA (ES)	Robur Fonder (SE)6
Bactolife A/S (DK)	G.11013 67 (25)	Roche AG (CH)
BASF SE (DE)	HBM Healthcare Investments (UK) 67	Roche / G (CH)
	Tibivi i leatificate filvestificitis (CR)0/	Contonius CC (DC)
Bavaria Weed GmbH (DE)	10:1: (] 5 [/] 10	Sartorius SE (DE)
Baxter International (USA) 68	i&i biotech Fund (LU)19	Sartorius Stedim Biotech GmbH (CH)68
Bayer AG (DE)	IDT Biologika GmbH (DE)	Shell (NL)
Bilfinger SE (DE)	Illumina Inc. (USA)12	Shimadzu Europa GmbH (DE) CP:
BIOCOM AG (DE) 20, 25, 56, 57	Immutep S.A. (F)30	Shionogi (JP)8
BioEcho Life Sciences GmbH (DE)	Inflarx NV (DE)31	Simcere Pharmaceutical Group (CN) 30
Bioeq AG (CH)	Informa Markets B.V	Sino Biological Europe (DE)
	CPhI 2022 (UK)	
BioFIT 2022 (F)		Sofinnova Partners (F)
Biofrontera AG (DE)	INHECO GmbH (DE)	Sotio a.s. (CR)
Biofrontera Inc. (USA)70	Intercell AG (A)31	Swiss Biotech Association (SBA) 84, CP.
BioInvent International AB (SE) 67	Invus S.A.S. (F)	
Biomerieux (F)	Italfarmaco (IT)	Takeda Pharmaceuticals (JP) 64, 66, 68
BioNTech SE (DE)		TCGX (USA)
Biosyntia ApS (DK)	J&K Consulting GmbH (DE) 53	Thermo Fisher Scientific (USA) 68
Blueprint Medicines (USA)	, , , , , , , , , , , , , , , , , , , ,	Truffle Capital (FR)
Boehringer Ingelheim (DE) 19, 64, 68, 71	Keensight Capital (F)	Trume capital (FR)
Poobringer Ingelheim Austria Cmb. 1. 71	Kinarus Therapeutics AG (CH)30, 71	VALIDOGEN GmbH (AT)38
Boehringer Ingelheim Austria GmbH 71		
Bristol-Myers Squibb (USA) 16	Krajete GmbH (AT)	Valneva (F/AT)
Byondis BV (NL)		Vattenfall (SE) 60
	Lacer Pharmaceuticals (ES)	Vector Biopharma AG (CH)39, 54
C4 Therapeutics Inc. (USA)18	Lanzatech Inc. (USA) 59, 60	Veeva Systems Inc. (USA)
CANDOR Bioscience GmbH (DE) 87		Venrock Healthcare Capital (USA) 26, 69
Canify AS (DK)	Magforce Nanotechnologies AG (GER) 70	Ventria Bioscience (USA) 6
Cardior Pharmaceuticals GmbH (DE) 70	Marinomed Biotech AG (AT)33	Veristat International Ltd (UK)5
CB21 Pharma Ltd. (CR)53	Merck & Co (USA)	Vetter Pharma-Fertigung GmbH (DE) 3
Celtis Persuables Ltd. (UK)18, 19	Merck KGaA (DE) 30, 38, 68, 71	Vialis SA (CH)
Celtic Renewables Ltd. (UK) 60	Minaris Regenerative Medicine GmbH (DE) . 9	Vibalogics GmbH (DE) 4,5, 48, 49
China Biologics Products, Inc 68	Mitsui (JP)60	Vifor Pharma (CH) 8-
Clariant (DE)60	Moderna Inc. (USA)	Vivebiotech S.L. (ES)
co.don AG (DE)	Morningside Ventures (USA)85	Vividion Therapeutics (USA)
Coherus BioSciences Inc. (USA) 30	<u> </u>	Volkswagen AG (DE) 62
Concept Heidelberg (DE) PharmaLab 36, 81	Neosphere Biotechnologies GmbH (DE). 19,	VTU Technology GmbH (AT) 6
Cowen Healthcare Royalty Partners (USA) . 85	20	- 100
		Wacker Chemie AG (DE)
CSL Ltd. (AUS)	Neste Jacobs Oy (FI)	
D (C) (LUZ)	Novalis Life Sciences LLC	Walleye Capital LLC (USA)73
Dassault Systemes (UK)	Novartis AG (CH)	V.C. (FIN I)
Deep Track Capital (USA) 26, 69	Novo Nordisk A/S (DK)	Y-Science (FIN)
DeuteRx LLC (USA)	Novo Seeds (DK)	YUMAB GmbH (DE)
Dow Chemical Company (USA) 62	Novozymes A/S (DK) 60, 68	
Dunad Therapeutics (UK)	NRx Pharmaceuticals Inc. (USA)22	ZAMBON Company S.p.A. (IT)
1	, , , , , , , , , , , , , , , , , , , ,	Zelluna Immunotherapies AS (NO) 60
ECBF Management GmbH (DE) 82, 83, 86	Oaktree Acquisition Corp. (USA) 67	Zeta Bio- und Verfahrenstechnik (AT) 6
Elektrochaea GmbH (DE) 60	Octapharma AG (DE)	Zymergen Inc. (USA) 60
	σεωριιατιία / το (DL)	-1c. 8c

Save the date!

SWISS BIOTECH DAY

April 24-25, 2023

Congress Center Basel

As one of the leading biotechnology conferences, the Swiss Biotech Day has developed into a truly global networking day, attracting many international delegations.

What you can expect:

- Meet 1,000+ senior experts from the life science industry
- > 70+ exhibitors and global village with international delegations from all over the world
- > Swiss Biotech Success Stories Awards
- Innovative biotech start-ups and medium-sized biotech companies
- > Thematically focused panel discussions
- > Swiss Biotech Report 2023
- > Pre-scheduled one-to-one partnering meetings
- > General Assembly of the Swiss Biotech Association

Sign in on our website at www.swissbiotechday.ch

and stay updated about any news.

Proudly presenting our first sponsors:

Media partners:

Organized by:

Dedicated to Contract Development and Manufacturing of Clinical Trial Materials and Commercial Products:

- Cell & Gene Therapeutics
- Oncolytic Viruses

- Viral Vectors
- Vaccines

Learn more about Partnering with IDT Biologika

IDT Biologika Am Pharmapark 06861 Dessau-Rosslau Germany **IDT Biologika Corporation** 1405 Research Boulevard Rockville, MD 20850 USA www.idt-biologika.com info@idt-biologika.com

